Machine Learning: Computation versus Statistics

Peter Bartlett

CS, Statistics, Simons Institute for the Theory of Computing
UC Berkeley

November 2, 2019

SIMONS
INSTITUTF

— for of Computing

Berkeley :.:

UNIVERSITY OF CALIFORN



Machine Learning: Computation versus Statistics

@ Tension:
computation versus statistics
optimization versus estimation

@ A central feature of machine learning (past, present, and future).




Machine Learning: Computation versus Statistics

@ Tension:
computation versus statistics
optimization versus estimation

@ A central feature of machine learning (past, present, and future).

v

© Deep learning




Machine Learning: Computation versus Statistics

@ Tension:
computation versus statistics
optimization versus estimation

@ A central feature of machine learning (past, present, and future).

v

© Deep learning
o Nonparametric statistical methodology




Machine Learning: Computation versus Statistics

@ Tension:
computation versus statistics
optimization versus estimation

@ A central feature of machine learning (past, present, and future).

v

© Deep learning
o Nonparametric statistical methodology
o Benign overfitting
o Implicit regularization




Machine Learning: Computation versus Statistics

@ Tension:
computation versus statistics
optimization versus estimation

@ A central feature of machine learning (past, present, and future).

v

© Deep learning
o Nonparametric statistical methodology
o Benign overfitting
o Implicit regularization

@ Computational complexity of estimation problems




Deep Learning Successes



Deep Learning Successes

Computer Vision

Feature:
Feature Name

Descrption

Tags

Image Format
Image Dimensions
Clip Ant Type

Is Adult Content:False

Categories: people_swimming Line Draving Type

Black & White Image.

bus parked on the street. a city street scene. front

Value

{“type": 0, "captions” [ { “text”: “a man swimming n a pool
of water’ “confidence’: 0.7850108124440484 }

[{"name" water", "confidence”: 0999642754793805 ),
name’ “sport’, “confidence: 0.9504992365837097 ),
name’: “swimming” "confidence" 0.906281828880310
hint”:“sport” ), {“name”. "pol’, "confidence’
08T87588477134705 ), { “name’:“water sport’
confdence’: 0631849467754364, “hint:“sport” )

Jpeg
15001155
0 MNon-clipart

0MNon-LineDraving

False

a man on a skateboard. man riding a bicycle.
orange cone on the ground. man riding a bicycle.
two people riding a skateboard. red helmet on the
man

a green jacket. a white horse. a man on a horse.
two people riding horses. man wearing a green
jacket. the helmet is black

windshield of a bus. man walking on sidewalk. a
silver car parked on the street. a city scene.

(microsoft.com) (Johnson et al, 201?)



Deep Learning Successes

Speech Recognition

What can | help
you with?

v
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Deep Learning Successes

Natural language processin
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avide range of
breten Palette von Technologien, technologies,inluding systems that
d understand our

d play games
Inthis
Spiele ie Poker spielen und auf semester the Simons Instiute for the
professionellem Niveau gehen. In Theory of Computing presents a
P
Theorie des of
. This panel
the recent advances
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hat.
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unserem Leben spief

(google.com, skype.com)
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Theoretical Foundations of Deep Learning

Deep learning to date: an era of craftsmanship

@ Engineering solutions to practical problems, striving for good
performance on benchmark datasets.

@ Ingredients: big data + fast computation (GPUs/TPUs) +... 7

Deep learning theory

@ There are huge gaps in our understanding of deep learning.

@ Practitioners stumbled on methodology that contradicts established
statistical wisdom.

@ Key challenge: develop the theoretical foundations that will allow us
to understand this new methodology and to improve it.
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Deep learning as nonparametric statistical methodology

Deep compositions of nonlinear functions, trained on data with SGD

h=hioh_10---0hy,
hi : x — o(W;x)

1
ith, e.g., = — i = max{0, v;
wi g U(V)I 1 +exp(—v,-)’ U(V)I X{ 7VI}7
or “resnets,” “max pooling,” “attention,” ...
1 10
_Ig -4 -2 0 2 All é 4‘(1
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Approximation
What kinds of functions can these compositions approximate
well?

Estimation

How can we effectively trade off complexity with sample size
requirements?

Optimization
How can we efficiently find a prediction rule that fits the
data well?
(More precisely, how can we efficiently find a prediction rule
that gives a good balance of complexity and fit to the data?)

v

Deep learning appears to give favorable trade-offs between these
competing issues.
We don’t understand why.

9/26
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Nonparametric Statistical Learning: Estimation

Estimation
Typically, we aim for a trade-off between

o Fit to the training data, e.g.,
R 1 —
R(f) =~ Do) == (Fla) — i),
i=1 i

o Complexity Q(f) of a prediction rule, e.g.,

Number of parameters

Norm of parameter vector

Norm of function in a reproducing kernel Hilbert space,
Bandwidth of smoothing kernel,

This is especially important for nonparametric methods, that is, those for
which the number of parameters grows with the sample size.
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Estimating simple structure

e.g., sparse linear regression,
low rank tensors,
rankings from surveys, ...
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Regularization: balancing R and Q

mfin aQ(f) + R(f), or min R(f) or
st. Q(f) < b,

Classical analysis: uniform convergence

A

sup { R(f) = R(F) : (F) < b} <e,

so that R(f) := El(f) ~ 1 ZE,(?) =: R(f).

To exploit uniform convergence, we should consider

¢ > R* — ¢, where R* = minf R(f).
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Nonparametric Statistical Learning: Estimation

Regularization: balancing R and Q

mfin aQ(f) + R(f), or min R(f) or min Q(f)
s.t. Q(f) < b, s.t. R(f) <c.

Classical analysis: uniform convergence

A

sup { R(f) = R(F) : (F) < b} <e,

. Overfitting regime
so that R(f) := El(f) ~ = Zf,(f) =: R(f). R(f) < R*

To exploit uniform convergence, we should consider
¢ > R* — ¢, where R* = minf¢ R(f).

v
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Deep Learning Surprises 1: Benign Overfitting

Benign Overfitting

@ Deep networks can achieve zero training error (for regression loss)

@ ... with near state-of-the-art performance

@ ... even for noisy problems (R* > 0).

@ No tradeoff between fit to training data and complexity!
o

Deep networks seem to operate in the overfitting regime

A

(R(f) < R*) but still predict accurately.

A new statistical phenomenon: benign overfitting.

13/26



Statistical Wisdom and Overfitting

. interpolating fits... [are] unlikely to predict future
data well at all.”

22 2. How to Construct Nonparametric Regression Estimates?

Figure 2.3. The estimate on the right seems to be more reasonable than the
estimate on the left, which interpolates the data.

. a function which interpolates the data ... is not
a reasonable estimate.”

Data Mining.Inference, and Predicion

Léssl6 Gyoefi Michael Kohler
‘Adam Krzytak Harro Walk

see also (B. and Rakhlin, Simons Institute, May 2019)
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Deep Learning Surprises 1: Benign Overfitting

A new statistical phenomenon:
good prediction with very small training error for regression loss

@ Statistical wisdom says a prediction rule should not fit too well.

@ But deep networks are trained to fit noisy data perfectly, and they
predict well.

15/26



Deep Learning Surprises 1: Benign Overfitting

e SIMONS =
Y0 INSTITUTE Mg D507 S
Progress in Benign Overfitting

e Simplicial interpolation (=~ nearest neighbor) (Belkin, Hsu, Mitra, 2018)

@ Nadaraya-Watson estimator with singular kernels
(Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018)

e Random matrix theory asymptotics (d =< n) for linear regression,

random nonlinear features
(Hastie, Montanari, Rosset, Tibshirani, 2019; Mei, Montanari, 2019; Belkin, Hsu and Xu, 2019)

@ Certain reproducing kernel Hilbert spaces
(Liang and Rakhlin, 2018; Rakhlin and Zhai, 2018; Liang, Rakhlin, Zhai, 2019)

@ Minimum norm linear regression: tight upper and lower bounds for
(B., Long, Lugosi, Tsigler, 2019)

finite sample, arbitrary dimension
16
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For £(f) = (f(x) — y)?, Q(x— (x,0)) =02, and <;> = &z where ¢
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d* n 2 d* n 1
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a (B., Long, Lugosi, Tsigler, 2019)
. o "

Characterizing benign overfitting in linear regression

For £(f) = (f(x) — y)?, Q(x— (x,0)) =02, and <;> = &z where ¢

is a bounded linear operator and z has subgaussian, independent entries,

d* n 2 d* n 1
<ER(f)— R*< — e e —
C1< Rd*+¢< )) (F) C2<”+Rd*+ﬁ>’

where d* = min{d : ry > c3n}, rqy and Ry are effective ranks of the
covariance of x in the subspace orthogonal to the d highest variance
directions, and ¢ is increasing.

That is, benign overfitting occurs iff there is a subspace where the
covariance has small magnitude, high dimension, and low eccentricity.
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Deep Learning Surprises 1: Benign Overfitting

Progress in Benign Overfitting

e Simplicial interpolation (= nearest neighbor) (Belkin, Hsu, Mitra, 2018)

@ Nadaraya-Watson estimator with singular kernels
(Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018)
@ Random matrix theory asymptotics (d =< n) for linear regression,
random nonlinear features
(Hastie, Montanari, Rosset, Tibshirani, 2019; Mei, Montanari, 2019; Belkin, Hsu and Xu, 2019)
@ Certain reproducing kernel Hilbert spaces
(Liang and Rakhlin, 2018; Rakhlin and Zhai, 2018; Liang, Rakhlin, Zhai, 2019)
@ Minimum norm linear regression: tight upper and lower bounds for
finite sample, arbitrary dimension (B., Long, Lugosi, Tsigler, 2019)

v

Benign Overfitting in Deep Networks? )
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© Deep learning mysteries

e Benign overfitting
o Implicit regularization

@ Computational complexity of estimation
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Deep Learning Surprises 2: Implicit Regularization

Regularization in the overfitting regime (¢ < R*)

min Q(f)
st. R(f) <c.
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Deep Learning Surprises 2: Implicit Regularization

Regularization in the overfitting regime (¢ < R*)

min Q(f)
st. R(f) <c.

Implicit Regularization

@ Stochastic gradient descent finds deep networks satisfying the
(overfitting) constraint, and these deep networks predict accurately.

@ What is the regularizer Q7?

@ The boundaries between the key issues of optimization, estimation,
and approximation are blurred.

20 /26



Deep Learning Surprises 2: Implicit Regularization

Progress in Implicit Regularization

@ Linear. f:x— (0,x): Q(f) = |60 — 0|
@ Polynomial. 6; replaced by 6¢: Q(f) like a Huber norm.

(Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro, 2017)

@ Logistic regression (Soudry, Hoffer, Srebro, 2017)

@ Linear convolutional: Q(f) penalizes norm of Fourier transform.

(Gunasekar, Lee, Soudry, Srebro, 2018)
4
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Implicit Regularization in Deep Networks? )
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e Benign overfitting
o Implicit regularization

@ Computational complexity of estimation
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Computational complexity of estimation

Mean estimation

Consider estimating the mean p of a distribution in RY from an n-sample:
Pr([[i—pl =€) <.

@ What is the computational complexity?
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@ What is the computational complexity?

o With subgaussian data, the empirical mean suffices.

e=0 <\/g—|— \/ Iog(j/é)> (optimal).

o With weaker assumptions? e.g., just a second moment?
The empirical mean is sensitive to large outliers.

@ In one dimension, we can compute a median of means.

e=0 ( I‘)g(’}/‘s)> (optimal).

e In R9?
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@ The optimal sample complexity for estimating the mean with
heavy-tailed (i.e., just second moments) data in R? is the same as
with su bga ussian data. (Lugosi and Mendelson, 2017)

@ Sum-of-squares machinery provides an efficient estimator.
But O(n24). (Hopkins, 2018)

@ A simple descent-based method has run-time O(n* + n?d).

Fast Mean Estimation with Sub-Gaussian Rates. (Cherapanamjeri, Flammarion, B., 2019.
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Computational complexity of estimation

Many open problems

Hardness of estimation?

Information theoretic boundary versus computational boundary?

(Fine-grained) reductions between estimation problems?

Canonical hard estimation problems?
(What is the SAT of estimation?)

c.f., e.g., (Berthet and Rigollet, 2013), (Brennan and Bresler, 2019)
4
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Congratulations!

4 LIDS
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