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Deep Learning Successes

Computer Vision

(microsoft.com) (Johnson et al, 2016)
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Deep Learning Successes
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Deep Learning Successes

Natural language processing

(google.com, skype.com)
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Theoretical Foundations of Deep Learning

Deep learning to date: an era of craftsmanship

Engineering solutions to practical problems, striving for good
performance on benchmark datasets.

Ingredients: big data + fast computation (GPUs/TPUs) + . . . ?

Deep learning theory

There are huge gaps in our understanding of deep learning.

Practitioners stumbled on methodology that contradicts established
statistical wisdom.

Key challenge: develop the theoretical foundations that will allow us
to understand this new methodology and to improve it.
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A Digression

: Model Reference Adaptive Control

United States Patent Office 3,221,229 
Patented Nov. 30, 1965 

3,221,229 
MODEL REFERENCE ADAPTIVE CONTROL 

SYSTEM 
Allen Kezer, North Billerica, and Henry Philip Whitaker, 

Framingham, Mass, and Paul Vernon Osburn, Oxon 
Hill, Md., assignors to Massachusetts Institute of 
Technology, Cambridge, Mass., a corporation of 
Massachusetts 

Filed Jan. 22, 1962, Ser. No. 168,584 
7 Claims. (C. 318-18) 

This invention relates to automatic control systems. It 
relates to control systems that are self-adaptive, that is, 
the performance of the control system automatically is 
improved during its operation. More particularly it re 
lates to an improvement of the Adaptive Control System 
described in a co-pending application by P. V. Osburn, 
Serial No. 168,583. The class of control systems to which 
this invention pertains is particularly appropriate to the 
control of aircraft and missiles. 
The October 1960 issue of "Electro-Technology” mag 

azine contains a survey article on adaptive control sys 
tems by R. A. Mathias and R. I. Van Nice. In the article, 
the term “adaptive control system” is given a wide in 
terpretation. This invention relates in a more restricted 
Sense to adaptive control systems characterized by auto 
matic adjustments to certain parameters in the control 
loop or loops to compensate for changes in plant or signal 
characteristics or in both plant and signal characteristics. 
At page 119 of this article, Mathias and Van Nice dis 
close a model reference adaptive flight control system de 
veloped and tested by H. P. Whitaker of the Massachusetts 
Institute of Technology. The present invention relates to 
improvements in adaptive control systems of this so-called 
“MIT type. 
These systems comprise a network of elements each 

having an input and an output and a number of summing 
points whereby branches and loops are connected to link 
a system input to a system output. Each element has a 
performance function relating its input quantity to its 
output quantity. 
The Whitaker system makes it possible to design a con 

trol system which adjusts its own controllable parameters, 
so that its dynamic performance satisfies the system speci 
fications in the presence of changing operating character 
istics. The novel feature is a reference model which 
stores the system's specifications and permits closed-loop 
control of the parameters through the use of response 
error functions measured during the normal operating re 
sponses of the system. 
Optimum or fully adapted performances are achieved 

when the measured error functions have values corre 
sponding to a specified performance index. Use of the 
model permits design flexibility, since the model can be 
made to change with the operating modes of the vehicle 
and can exhibit non-linear characteristics if the systems 
specifications required these features. If the specifications 
are relatively loose the system model can be crude and 
simple, but, on the other hand, greater control of per 
formance, and hence greater flexibility, can be achieved 
by designing a model of increased sophistication. The 
self-improving process in these prior-art Systems has em 
ployed test pulses, sampling of the error quantities, cross 
correlation techniques, and in some cases a process of 
searching for a minimum point of an error function. 
With these prior-art techniques it has been possible to 
achieve adaptation within two or three time constants of 
the dominant response modes of the System. 

It is an object of the instant invention to make a sig 
nificant reduction in the convergence time and to elimi 
nate much of the complexity of the previous mechanisms. 
Features of the invention are that adaptation is contin 
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2 
uous, using the normal inputs of the system without any 
Special test inputs; and the adaptive features are mecha 
nized with simple equipment. 
Another feature of the invention is the extension of 

the model reference principle. In addition to the model 
System, which is ordinarily in the form of an electrical 
network, this invention features in the adaptation circuit 
additional networks each of which has the characteristics 
of a filter which is the reciprocal of certain of the forward 
path elements, one such filter being required for each of 
the adaptable parameters of the control system. Other 
features and advantages of the invention will be appre 
hended from the following specifications and annexed 
drawings of which: 

FIG. 1 is a block diagram of the model reference adap 
tive control system; 
FIG. 2 is a mathematical block diagram of the system 

of FIG. 1; 
FIG. 3 is a graph showing typical variation of integral 

squared criterion within the adjustable parameter; 
FIGS. 4a and 4b are generalized control system block 

diagrams represented by the single block 10 in FIG. 2; 
FIG. 5 is a functional diagram illustrating a feature of 

the invention; 
F.G. 6 is a mathematical block diagram of an aircraft 

roil control system to which the invention is applied by 
way of specific example; 

FIGS. 7a, 7b, 7c, and 7d are graphs of error functions 
for the adaptive roll system of FIG. 6; 

FIGS. 8a, 8b, 8c, and 8d are graphs of the system re 
sponse of the adaptive system of FIG. 6 for supersonic 
flight conditions; 

FIGS. 9a, 9b, 9c, and 9d are graphs of the system re 
sponse for subsonic flight conditions; 

FIG. 10 is a block diagram illustrating an alternative 
embodiment of the invention; 
FIG. 11 is a block diagram illustrating another alterna 

tive embodiment of the invention. 
FIG. 1 is a simplified functional diagram of an adaptive 

system. The dotted box. 10 incloses the stabilization and 
directional control system 11, the aircraft 12 upon which 
the system 11 operates, an output quantity indicating unit 
13, and a feedback path 14. The stabilization and direc 
tional control system 11 comprises various gyroscopes, 
amplifiers, and actuators which are necessary to convert 
the pilot's directional commands 15 to motions of the air 
craft control surfaces. Equipment, perhaps involving 
gyroscopes, is included in the output quantity indicating 
unit 13, whereby the attitude 16 of the aircraft 12 is con 
verted into suitable electrical signals for feedback 14 to 
the control system 11. A dotted box 20 encloses the ele 
ments of the adaptation unit 20 which comprise an error 
signal comparator 21, a performance analyzer 22, and 
an adjusting servo 23, the output 24 of which adjusts the 
variable parameters of the stabilization and directional 
control system 11. The performance analyzer 22 receives 
as inputs the Response Error Quantity from the com 
parator 21, and certain intermediate signals 26 from the 
control system 11, as hereinafter explained. Associated 
with the adaptation unit 20 is the performance reference 
model 30 designed to respond to the directional control 
commands 15 as the aircraft 12 is desired to respond. 
Typically the model 30 will itself be subject to reference 
settings 31 wherein take-off weight, changes in balance, 
and other such variables are accommodated. A second 
feedback path 34 carries the electrical indications of the 
aircraft attitude outputs back to the error signal com 
parator 21 where they may be compared to the electrical 
outputs 35 of the performance reference model. 

In these systems there are two different kinds of error 
quantities. One is the true system error quantity, Eel, 

Whitaker’s “MIT Rule” circa 1961

θk+1 = θk − γ dĴ(θk )
dθ ; J =

∫
(yr (t)− yp(t))2 dt.

Dept of Systems Engineering, ANU

Brian Anderson John Moore
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Deep learning as nonparametric statistical methodology

Deep compositions of nonlinear functions, trained on data with SGD

h = hL ◦ hL−1 ◦ · · · ◦ h1,

hi : x 7→ σ(Wix)

with, e.g., σ(v)i =
1

1 + exp(−vi )
, σ(v)i = max{0, vi},

or “resnets,” “max pooling,” “attention,” . . .
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Nonparametric Statistical Learning Methodology

Approximation
What kinds of functions can these compositions approximate
well?

Estimation
How can we effectively trade off complexity with sample size
requirements?

Optimization
How can we efficiently find a prediction rule that fits the
data well?
(More precisely, how can we efficiently find a prediction rule
that gives a good balance of complexity and fit to the data?)

Deep learning appears to give favorable trade-offs between these
competing issues.

We don’t understand why.
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Nonparametric Statistical Learning: Estimation

Estimation

Typically, we aim for a trade-off between

Fit to the training data,

e.g.,

R̂(f ) :=
1

n

n∑
i=1

`i (f )

=
1

n

n∑
i=1

(f (xi )− yi )
2 ,

Complexity Ω(f ) of a prediction rule

, e.g.,

Number of parameters
Norm of parameter vector
Norm of function in a reproducing kernel Hilbert space,
Bandwidth of smoothing kernel,
. . .

This is especially important for nonparametric methods, that is, those for
which the number of parameters grows with the sample size.
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Abstract In applications throughout science and engineering one is often faced with
the challenge of solving an ill-posed inverse problem, where the number of available
measurements is smaller than the dimension of the model to be estimated. However in
many practical situations of interest, models are constrained structurally so that they
only have a few degrees of freedom relative to their ambient dimension. This paper
provides a general framework to convert notions of simplicity into convex penalty
functions, resulting in convex optimization solutions to linear, underdetermined in-
verse problems. The class of simple models considered includes those formed as
the sum of a few atoms from some (possibly infinite) elementary atomic set; exam-
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Estimating simple structure

e.g., sparse linear regression,
low rank tensors,
rankings from surveys, ...

Minimum norm fit:
Ω(f ) = ‖f ‖A

min Ω(f )

s.t. R̂(f ) ≤ ε.
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Nonparametric Statistical Learning: Estimation

Regularization: balancing R̂ and Ω

min
f

aΩ(f ) + R̂(f ),

or min R̂(f ) or min Ω(f )

s.t. Ω(f ) ≤ b, s.t. R̂(f ) ≤ c.

Classical analysis: uniform convergence

sup
{
R(f )− R̂(f ) : Ω(f ) ≤ b

}
≤ ε,

so that

R(f ) := E`(f )

≈

1

n

n∑
i=1

`i (f ) =: R̂(f ).

To exploit uniform convergence, we should consider
c ≥ R∗ − ε, where R∗ = minf R(f ).

Overfitting regime

R̂(f )� R∗
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Deep Learning Surprises 1: Benign Overfitting

Benign Overfitting

Deep networks can achieve zero training error (for regression loss)

... with near state-of-the-art performance

... even for noisy problems (R∗ � 0).

No tradeoff between fit to training data and complexity!

Deep networks seem to operate in the overfitting regime
(R̂(f )� R∗) but still predict accurately.

A new statistical phenomenon: benign overfitting.
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Statistical Wisdom and Overfitting

“... interpolating fits... [are] unlikely to predict future

data well at all.”

“... a function which interpolates the data ... is not
a reasonable estimate.”

see also (B. and Rakhlin, Simons Institute, May 2019)
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Deep Learning Surprises 1: Benign Overfitting

A new statistical phenomenon:
good prediction with very small training error for regression loss

Statistical wisdom says a prediction rule should not fit too well.

But deep networks are trained to fit noisy data perfectly, and they
predict well.
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Deep Learning Surprises 1: Benign Overfitting

Progress in Benign Overfitting

Simplicial interpolation (≈ nearest neighbor) (Belkin, Hsu, Mitra, 2018)

Nadaraya-Watson estimator with singular kernels
(Belkin, Hsu, Mitra, 2018; Belkin, Rakhlin, Tsybakov, 2018)

Random matrix theory asymptotics (d � n) for linear regression,
random nonlinear features

(Hastie, Montanari, Rosset, Tibshirani, 2019; Mei, Montanari, 2019; Belkin, Hsu and Xu, 2019)

Certain reproducing kernel Hilbert spaces
(Liang and Rakhlin, 2018; Rakhlin and Zhai, 2018; Liang, Rakhlin, Zhai, 2019)

Minimum norm linear regression: tight upper and lower bounds for
finite sample, arbitrary dimension (B., Long, Lugosi, Tsigler, 2019)
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Deep Learning Surprises 1: Benign Overfitting

(B., Long, Lugosi, Tsigler, 2019)

Characterizing benign overfitting in linear regression

For `(f ) = (f (x)− y)2,

Ω (x 7→ 〈x , θ〉) = ‖θ‖2, and

(
x
y

)
= Φz where Φ

is a bounded linear operator and z has subgaussian, independent entries,

c1

(
d∗

n
+

n

Rd∗
+ φ

(
1

n

))
≤ ER(f̂ )− R∗ ≤ c2

(
d∗

n
+

n

Rd∗
+

1√
n

)
,

where d∗ = min{d : rd ≥ c3n}, rd and Rd are effective ranks of the
covariance of x in the subspace orthogonal to the d highest variance
directions, and φ is increasing.

That is, benign overfitting occurs iff there is a subspace where the
covariance has small magnitude, high dimension, and low eccentricity.
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Deep Learning Surprises 1: Benign Overfitting

Progress in Benign Overfitting

Simplicial interpolation (≈ nearest neighbor) (Belkin, Hsu, Mitra, 2018)
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Minimum norm linear regression: tight upper and lower bounds for
finite sample, arbitrary dimension (B., Long, Lugosi, Tsigler, 2019)

Benign Overfitting in Deep Networks?
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Machine Learning: Computation versus Statistics

1 Deep learning mysteries

Benign overfitting
Implicit regularization

2 Computational complexity of estimation
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Deep Learning Surprises 2: Implicit Regularization

Regularization in the overfitting regime (c � R∗)

min Ω(f )

s.t. R̂(f ) ≤ c .

Implicit Regularization

Stochastic gradient descent finds deep networks satisfying the
(overfitting) constraint, and these deep networks predict accurately.

What is the regularizer Ω?

The boundaries between the key issues of optimization, estimation,
and approximation are blurred.
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Deep Learning Surprises 2: Implicit Regularization

Progress in Implicit Regularization

Linear. f : x 7→ 〈θ, x〉: Ω(f ) = ‖θ − θ0‖.
Polynomial. θi replaced by θαi : Ω(f ) like a Huber norm.

(Gunasekar, Woodworth, Bhojanapalli, Neyshabur, Srebro, 2017)

Logistic regression (Soudry, Hoffer, Srebro, 2017)

Linear convolutional: Ω(f ) penalizes norm of Fourier transform.
(Gunasekar, Lee, Soudry, Srebro, 2018)

Implicit Regularization in Deep Networks?
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Machine Learning: Computation versus Statistics

1 Deep learning mysteries

Benign overfitting
Implicit regularization

2 Computational complexity of estimation
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Computational complexity of estimation

Mean estimation

Consider estimating the mean µ of a distribution in Rd from an n-sample

:
Pr (‖µ̂− µ‖ ≥ ε) ≤ δ.

What is the computational complexity?

With subgaussian data, the empirical mean suffices.

ε = O

(√
d
n +

√
log(1/δ)

n

)
(optimal).

With weaker assumptions? e.g., just a second moment?

The empirical mean is sensitive to large outliers.

In one dimension, we can compute a median of means.

ε = O

(√
log(1/δ)

n

)
(optimal).

In Rd?
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Computational complexity of estimation

Mean estimation with bounded second moments

The optimal sample complexity for estimating the mean with
heavy-tailed (i.e., just second moments) data in Rd is the same as
with subgaussian data. (Lugosi and Mendelson, 2017)

Sum-of-squares machinery provides an efficient estimator.

But O(n24).

(Hopkins, 2018)

A simple descent-based method has run-time O(n4 + n2d).
Fast Mean Estimation with Sub-Gaussian Rates. (Cherapanamjeri, Flammarion, B., 2019.
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Computational complexity of estimation

Many open problems

Hardness of estimation?

Information theoretic boundary versus computational boundary?

(Fine-grained) reductions between estimation problems?

Canonical hard estimation problems?
(What is the SAT of estimation?)

c.f., e.g., (Berthet and Rigollet, 2013), (Brennan and Bresler, 2019)
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