From Learning and Control to Deep Reinforcement Learning

Benjamin Recht
University of California, Berkeley
I took four courses in graduate school that completely revolutionized my thinking:
I took four courses in graduate school that completely revolutionized my thinking:

6.432: Detection and Estimation with Wornell
9.520 Statistical Learning Theory with Poggio
6.24x: Complex systems with Megretski
6.253: Convex optimization with Berteskas
I took four courses in graduate school that completely revolutionized my thinking:

- 6.432: Detection and Estimation with Wornell
- 9.520 Statistical Learning Theory with Poggio
- 6.24x: Complex systems with Megretski
- 6.253: Convex optimization with Berteskas

4 of these were LIDS courses!
I took four courses in graduate school that completely revolutionized my thinking:

6.432: Detection and Estimation with Wornell
9.520 Statistical Learning Theory with Poggio
6.24x: Complex systems with Megretski
6.253: Convex optimization with Berteskas

4 of these were LIDS courses!

All are prerequisites for modern RL, but I never took an RL course…
At last—a computer program that can beat a champion Go player

ALL SYSTEMS GO
trustable, scalable, predictable
Reinforcement Learning is the study of how to use past data to enhance the future manipulation of a dynamical system.
Reinforcement Learning is the study of how to use past data to enhance the future manipulation of a dynamical system.
What is ML?
What is ML?

using past **data** to **learn** about and/or **act** upon the world
What is ML?

using past **data** to **learn** about and/or **act** upon the world

Environments too complex
What is ML?

using past **data** to **learn** about and/or **act** upon the world

Environments too complex

Sensing too complex
What is ML?

using past **data** to **learn** about and/or **act** upon the world

Environments too complex

Sensing too complex

Models too complex
What is Control?
What is Control?

using feedback to mitigate the effects of dynamic uncertainty
What is Control?

using feedback to mitigate the effects of dynamic uncertainty

Environments are uncertain
What is Control?

using **feedback** to **mitigate** the effects of **dynamic uncertainty**

Environments are uncertain

Sensing/components are uncertain
What is Control?

using **feedback** to **mitigate** the effects of dynamic uncertainty

- Environments are uncertain
- Sensing/components are uncertain
- Models are uncertain

![Diagram of control system](image)
How do we get the best of both?
How do we get the best of both?

Dynamics & Control
Detailed Models
How do we get the best of both?

Dynamics & Control Detailed Models

Machine Learning & Big Data
Dynamic Programming and Optimal Control

Dimitri P. Bertsekas
How do we get the best of both?

- Dynamics & Control Detailed Models
- Machine Learning & Big Data
How do we get the best of both?

- Dynamics & Control Detailed Models
- Machine Learning & Big Data

Optimization
RL Methods

minimize \(\mathbb{E}_e \left[\sum_{t=1}^{T} C_t(x_t, u_t) \right] \)

s.t. \(x_{t+1} = f_t(x_t, u_t, e_t) \)

\(u_t = \pi_t(\tau_t) \)

How to solve optimal control when the model \(f \) is unknown?
RL Methods

minimize \(\mathbb{E}_e \left[\sum_{t=1}^{T} C_t(x_t, u_t) \right] \)

s.t. \(x_{t+1} = f_t(x_t, u_t, e_t) \)

\(u_t = \pi_t(\tau_t) \)

How to solve optimal control when the model \(f \) is unknown?

- **Model-based**: fit model from data (aka, standard engineering practice)
RL Methods

Minimize:
\[
\mathbb{E}_e \left[\sum_{t=1}^{T} C_t(x_t, u_t) \right]
\]

Subject to:
\[
\begin{align*}
x_{t+1} &= f_t(x_t, u_t, e_t) \\
u_t &= \pi_t(\tau_t)
\end{align*}
\]

How to solve optimal control when the model \(f \) is unknown?

- **Model-based:** fit model from data (aka, standard engineering practice)
- **Model-free**
RL Methods

How to solve optimal control when the model f is unknown?

- **Model-based**: fit model from data (aka, standard engineering practice)
- **Model-free**
 - **Approximate dynamic programming**: estimate cost from data
RL Methods

minimize \(E[e] \left[\sum_{t=1}^{T} C_t(x_t, u_t) \right] \)

s.t.
\[
\begin{align*}
x_{t+1} &= f_t(x_t, u_t, e_t) \\
u_t &= \pi_t(\tau_t)
\end{align*}
\]

approximate dynamic programming
model-based
direct policy search

How to solve optimal control when the model \(f \) is unknown?

- **Model-based**: fit model from data (aka, standard engineering practice)
- **Model-free**
 - **Approximate dynamic programming**: estimate cost from data
 - **Direct policy search**: search for actions from data
Deep Reinforcement Learning
Deep Reinforcement Learning

- Simply parameterize value function or policy as a deep net
Deep Reinforcement Learning

- Simply parameterize value function or policy as a deep net
- All of the ideas have been here since NDP!
Deep Reinforcement Learning

- Simply parameterize value function or policy as a deep net
- All of the ideas have been here since NDP!
- Most of these algorithms don’t really “work.”
What is ML good for in control?
What is ML good for in control?

• Fundamentally, almost all machine learning successes are in *nonparametric prediction* (mostly classification).
What is ML good for in control?

- Fundamentally, almost all machine learning successes are in *nonparametric prediction* (mostly classification).
What is ML good for in control?

- Fundamentally, almost all machine learning successes are in *nonparametric prediction* (mostly classification).
What is ML good for in control?

• Fundamentally, almost all machine learning successes are in *nonparametric prediction* (mostly classification).
What is ML good for in control?

- Fundamentally, almost all machine learning successes are in nonparametric prediction (mostly classification).
What is ML good for in control?

- Fundamentally, almost all machine learning successes are in *nonparametric prediction* (mostly classification).

Perceptual sensors in the loop

Forecasting in MPC
What is ML good for in control?

- Fundamentally, almost all machine learning successes are in nonparametric prediction (mostly classification).
managing uncertainty and learning in optimal control

minimize \(\mathbb{E}_\epsilon \left[\sum_{t=1}^{T} C_t(x_t, u_t) \right] \)

s.t.

- \(x_{t+1} = f_t(x_t, u_t, e_t) \) changing costs
- \(u_t = \pi_t(\tau_t) \) uncertain dynamics.
- \(x_t \in \mathcal{X}, \; u_t \in \mathcal{U} \) safety constraints
- \(z_t = g(x_t) \) perceptual sensing

How to incorporate uncertain predictive perception in trustable, scalable, predictable autonomy?
Actionable Intelligence is the study of how to use past data to enhance the future manipulation of a dynamical system.
Actionable Intelligence is the study of how to use past data to enhance the future manipulation of a dynamical system.
Actionable Intelligence is the study of how to use past data to enhance the future manipulation of a dynamical system.
Actionable Intelligence is the study of how to use past data to enhance the future manipulation of a dynamical system.
Actionable Intelligence is the study of how to use past data to enhance the future manipulation of a dynamical system.
Actionable Intelligence is the study of how to use past data to enhance the future manipulation of a dynamical system.

As soon as a machine learning system is unleashed in feedback with humans, that system is an actionable intelligence system, not a machine learning system.
Actionable Intelligence

trustable, scalable, predictable
L4DC 2020 – Learning for Dynamics and Control
UC Berkeley, June 10-11, 2020

Mark your calendars!
Deadline: November 15th, 2019
6-page papers

Formal call for papers will be out shortly!

Local organizers: Ben Recht, Claire Tomlin
L4DC.org