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Cost of low delay
Rate distortion function for Poisson processes — Gallager 1976

Suppose a network guarantees timely delivery of packets arriving according to a Poisson process.

Poisson process has rate λ, arrival times {Ai}
Network delivers the packets at times Di .

Guarantee is on the delay Ti = Di − Ai ≥ 0:

lim
n

1

n

n∑
i=1

E [Ti ] ≤ d .

The guarantee prohibits {Di} and {Ai} being independent. The network infrastructure, in
addition to what required for the packet content, must have extra capacity to ‘transmit’ the
1
n
I (An;Dn) units of information in the packet timing.

How much?



Cost of low delay
Rate distortion function for Poisson processes — Gallager 1976

Subject to the delay guarantee, how small can 1
n
I (An;Dn) be?

Answer: the network needs to provision additional capacity of at least R(λd) = − log(1− e−λd)
units of information per packet (λR(λd) per time) to meet the delay guarantee of d .

R(λd) ≈

{
− log(λd) λd � 1

e−λd λd � 1

No big deal if λd is large.

Can be significant if λd is much less than 1.



·/M/1 single server queue
Information about {Ai} in {Di} — Anantharam & Verdú 1996

Packets arrive to an initially empty queue at time instants A1,A2, . . . .

A server processes the packets, one by one, in the order of arrival.

Servicing packet i takes Si amount of time,

{Si} i.i.d., independent of {Ai}, exponential with rate µ.

Packets depart at times D1,D2, . . .

Di = Si + max{Di−1,Ai}.
What can we say about lim 1

n
I (An;Dn)?



·/M/1 single server queue
Information about {Ai} in {Di} — Anantharam & Verdú 1996

What can we say about lim 1
n
I (An;Dn)?

Answer: for a given arrival rate λ

1

n
I (An;Dn) ≤

[
log(µ/λ)

]+

with equality iff {Ai} is a Poisson process of rate λ.

The capacity of the ·/M/1 queue per time, with the input rate λ, is

λ log(µ/λ) per unit time,

which is maximized at λ = µ/e to give

C = µ log(e)/e per unit time.



Age of information

‘Low delay’ does not mean ‘timely’:

Even when there is no delay (Ti = 0), the receiver is completely up to date only at the instants
departure instants Di ,

its information getting stale while it awaits the next delivery.

In general at a moment t between two departure instants Di ≤ t < Di+1 the the receiver’s latest
information has ‘age’ t − Ai .

If the departures are rare (i.e., if the arrivals are rare) this is a problem.



Age of information
Age for the M/M/1 FIFO queue — Kaul, Yates & Gruteser 2012

Age(t)

t
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Simulation of the instantaneous age: queue initially
empty. Black dots: arrivals, red dots: departures.

One finds the time average to be

(µ− λ)−1 + µ−1[µ/λ− λ/µ]

For a given service rate µ the
average age is minimized by
choosing λ ≈ 0.53µ.



Price of youth
To guarantee freshness how much information is needed?

Take a discrete time model:

Suppose {Ui : i ≥ 1} is a random process. (State of a system to be monitored.)

Suppose {Vi : i ≥ 1} is a random process. (What is delivered to the monitor.)

Causality: U∞i+1 — U i — V i .

Let Ki be the largest j for which (j ,Uj) may be determined from V i .

What is the tradeoff

Age = lim
1

n

∑
i≤n

E [i − Ki ] versus lim
1

n
I (Un;V n)?



Remarks

Elegant problems hide in the intersection of queueing/networking/information theory.

Even in very classical contexts (such as the M/M/1 queue) there are new (and interesting)
questions one can pose.

Very little has been explored in this intersection. The union of information theory and networking
still remains unconsummated.


