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Cost of low delay

Rate distortion function for Poisson processes — Gallager 1976

Suppose a network guarantees timely delivery of packets arriving according to a Poisson process.
@ Poisson process has rate ), arrival times {A;}
o Network delivers the packets at times D;.
o Guarantee is on the delay T; = D; — A; > 0:
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@ The guarantee prohibits {D;} and {A;} being independent. The network infrastructure, in
addition to what required for the packet content, must have extra capacity to ‘transmit’ the
1/(A"; D") units of information in the packet timing.

o How much?



Cost of low delay

Rate distortion function for Poisson processes — Gallager 1976

Subject to the delay guarantee, how small can %I(A”; D") be?

o Answer: the network needs to provision additional capacity of at least R(Ad) = — log(1 — e~ )
units of information per packet (AR(Ad) per time) to meet the delay guarantee of d.
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@ No big deal if \d is large.

@ Can be significant if Ad is much less than 1.



-/M/1 single server queue
Information about {A;} in {D;} — Anantharam & Verdd 1996

Packets arrive to an initially empty queue at time instants A;, A, ....

°
@ A server processes the packets, one by one, in the order of arrival.
°

Servicing packet i takes S; amount of time,

o {S;}i.i.d., independent of {A;}, exponential with rate .
o Packets depart at times Dy, Ds, ...
e D=5+ max{D,-,h A,‘}.

e What can we say about lim 1/(A”; D")?



-/M/1 single server queue
Information about {A;} in {D;} — Anantharam & Verdd 1996

What can we say about lim £/(A"; D")?
@ Answer: for a given arrival rate A
1 n n
~I(A"D") < [log(p/)]"
with equality iff {A;} is a Poisson process of rate A.
@ The capacity of the -/M/1 queue per time, with the input rate X, is
Alog(u/A)  per unit time,

@ which is maximized at A = u/e to give

C = plog(e)/e per unit time.



Age of information

‘Low delay’ does not mean ‘timely”:

@ Even when there is no delay (T; = 0), the receiver is completely up to date only at the instants
departure instants D,

@ its information getting stale while it awaits the next delivery.

@ In general at a moment t between two departure instants D; < t < Djy1 the the receiver's latest
information has ‘age’ t — A;.

o If the departures are rare (i.e., if the arrivals are rare) this is a problem.



Age of information
Age for the M/M/1 FIFO queue — Kaul, Yates & Gruteser 2012

Age(t)
@ One finds the time average to be
(h=N""+p" /A= 2]
@ For a given service rate u the
; average age is minimized by
a a a3 as choosing A =~ 0.53u.
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Simulation of the instantaneous age: queue initially
empty. Black dots: arrivals, red dots: departures.



Price of youth

To guarantee freshness how much information is needed?

Take a discrete time model:

@ Suppose {U; : i > 1} is a random process. (State of a system to be monitored.)

Suppose {V; : i > 1} is a random process. (What is delivered to the monitor.)
Causality: Uz, — U' — V',

Let K; be the largest j for which (j, U;) may be determined from V'.

@ What is the tradeoff
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Remarks

@ Elegant problems hide in the intersection of queueing/networking/information theory.

@ Even in very classical contexts (such as the M/M/1 queue) there are new (and interesting)
questions one can pose.

@ Very little has been explored in this intersection. The union of information theory and networking
still remains unconsummated.



