Some encounters between networking and information theory

Emre Telatar

EPFL

LIDS — November 1, 2019

Suppose a network guarantees timely delivery of packets arriving according to a Poisson process.

- Poisson process has rate λ , arrival times $\{A_i\}$
- Network delivers the packets at times D_i.
- Guarantee is on the delay $T_i = D_i A_i \ge 0$:

$$\lim_n \frac{1}{n} \sum_{i=1}^n E[T_i] \leq d.$$

- The guarantee prohibits $\{D_i\}$ and $\{A_i\}$ being independent. The network infrastructure, in addition to what required for the packet content, must have extra capacity to 'transmit' the $\frac{1}{n}I(A^n; D^n)$ units of information in the packet timing.
- How much?

Subject to the delay guarantee, how small can $\frac{1}{n}I(A^n; D^n)$ be?

• Answer: the network needs to provision additional capacity of at least $R(\lambda d) = -\log(1 - e^{-\lambda d})$ units of information per packet ($\lambda R(\lambda d)$ per time) to meet the delay guarantee of d.

•
$$R(\lambda d) pprox egin{cases} -\log(\lambda d) & \lambda d \ll 1 \ e^{-\lambda d} & \lambda d \gg 1 \end{cases}$$

- No big deal if λd is large.
- Can be significant if λd is much less than 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

- Packets arrive to an initially empty queue at time instants A₁, A₂,....
- A server processes the packets, one by one, in the order of arrival.
- Servicing packet *i* takes S_i amount of time,
- $\{S_i\}$ i.i.d., independent of $\{A_i\}$, exponential with rate μ .
- Packets depart at times D_1, D_2, \ldots
- $D_i = S_i + \max\{D_{i-1}, A_i\}.$
- What can we say about $\lim \frac{1}{n}I(A^n; D^n)$?

$\cdot/M/1$ single server queue Information about {A_i} in {D_i} — Anantharam & Verdú 1996

What can we say about $\lim \frac{1}{n}I(A^n; D^n)$?

• Answer: for a given arrival rate λ

$$rac{1}{n} I(extsf{A}^n; extsf{D}^n) \leq ig[\log(\mu/\lambda) ig]^+$$

with equality iff $\{A_i\}$ is a Poisson process of rate λ .

• The capacity of the $\cdot/M/1$ queue *per time*, with the input rate λ , is

 $\lambda \log(\mu/\lambda)$ per unit time,

• which is maximized at $\lambda = \mu/e$ to give

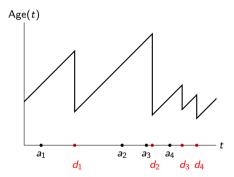
 $C = \mu \log(e)/e$ per unit time.

'Low delay' does not mean 'timely':

- Even when there is no delay ($T_i = 0$), the receiver is completely up to date only at the instants departure instants D_i ,
- its information getting stale while it awaits the next delivery.
- In general at a moment t between two departure instants $D_i \leq t < D_{i+1}$ the the receiver's latest information has 'age' $t A_i$.

• If the departures are rare (i.e., if the arrivals are rare) this is a problem.

Age of information Age for the M/M/1 FIFO queue — Kaul, Yates & Gruteser 2012



Simulation of the instantaneous age: queue initially empty. Black dots: arrivals, red dots: departures.

• One finds the time average to be

$$(\mu - \lambda)^{-1} + \mu^{-1}[\mu/\lambda - \lambda/\mu]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

• For a given service rate μ the average age is minimized by choosing $\lambda \approx 0.53\mu$.

Take a discrete time model:

- Suppose $\{U_i : i \ge 1\}$ is a random process. (State of a system to be monitored.)
- Suppose $\{V_i : i \ge 1\}$ is a random process. (What is delivered to the monitor.)
- Causality: $U_{i+1}^{\infty} U^i V^i$.
- Let K_i be the largest j for which (j, U_j) may be determined from V^i .
- What is the tradeoff

Age = lim
$$\frac{1}{n} \sum_{i \leq n} E[i - K_i]$$
 versus lim $\frac{1}{n} I(U^n; V^n)$?

- Elegant problems hide in the intersection of queueing/networking/information theory.
- Even in very classical contexts (such as the M/M/1 queue) there are new (and interesting) questions one can pose.
- Very little has been explored in this intersection. The union of information theory and networking still remains unconsummated.